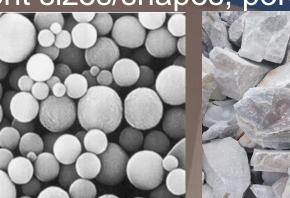


Using Low-field NMR Relaxation to Optimise Particulate Dispersions of Silica

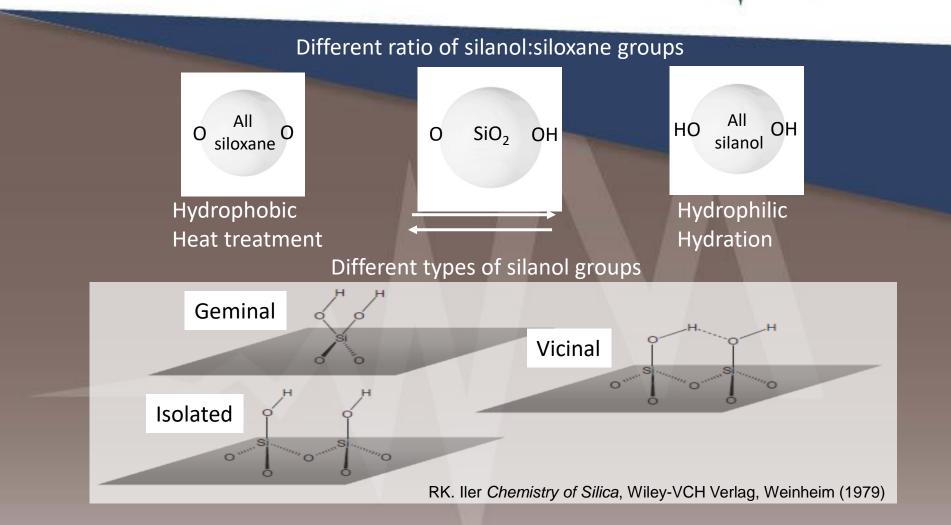
David Fairhurst, Terence Cosgrove, Matthew Ackroyd, Simon Stebbing, Stuart Prescott


ACS Spring Meeting Monday, March 20th San Diego, CA

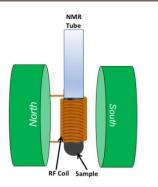
Silica Materials

Can be natural (processed) or synthetic (manufactured) → different sizes/shapes; porous/nonporous

Extensive usage in wide range of applications



Silica Surface Chemistry: Complex_____Mageleka


- surface physical and chemical characterization can be challenging
 - wetted surface area different for each silica type
 - important in formulation ability to tailor silica properties to suit an application provides economic benefits

NMR Relaxation

NMR solvent relaxation times sensitive to: the available (wetted) surface area in a dispersion of particles in a fluid the specific nature of the particle's interfacial characteristics

NMR Spectrometer

Magnet and RF Coil Assembly

- Iiquid molecule that was free
 Iiquid molecule that was bound

Both have a characteristic relaxation time, T, and a relaxation rate, R (=1/T) Free Liquid: Long Relaxation time (sec) Bound Liquid: Short Relaxation time (msec)

Observe a single relaxation that is a weighted average

 $R_{av} = R_f (1-\phi) + R_b \phi$ ϕ : proportion of bound liquid R_b : relaxation rate of bound liquid R_f : relaxation rate of free liquid

NMR relaxation measurements are fast, non-invasive, and can be made at industrially relevant concentrations in virtually any type of liquid

Wetted Surface area of Particulate Suspensions

porous

Surface area measurement by gas adsorption (N_2 /BET) only suitable for dry powders

Surface Area: Size and Shape

dimpled

Three spherical particles same geometric diameter

smooth

Calculated surface area based on *diameter* is the same

Calculated surface area based on *diameter* is the same
 Invasional Non-imaging particle sizers → Equivalent Spherical Diameter (ESD)
 Surface areas calculated from such data can be erroneous and misleading

NMR relaxation measurements can provide **direct** determination of **wetted** surface area* of particulate suspensions without dilution, and irrespective of size or shape

* C.L. Claves et al, Surface Area Determination via NMR: Fluid and Frequency Effects, Powder Technology, 54(4) 261 (1988)

Determination of Wetted Surface Area: Basic Equation

Conversion of relaxation time to surface area simple, straightforward calculation* $R_{av} = SA [\phi_p L \rho_p (R_s - R_b)] + R_b$

All parameters are known or can be independently measured or calculated

Contrast to LLS instruments → raw scattered/diffracted intensity data de-convoluted using complex algorithms (sums of exponentials or Bessel functions)

Using suitable reference sample \rightarrow define a calibration constant, k_A : $k_A = L \rho_p (R_s - R_b)$

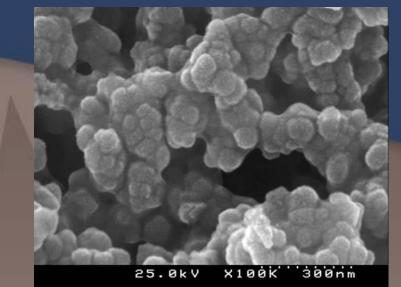
Then,

$$SA = R_{av} / [k_A \phi_p] + R_b$$

Normalize out effects of solvent by defining a specific relaxation rate constant, R_{so}:

$$R_{sp} = [R_{susp}/R_{solv}] - 1$$

* C. L. Cooper *et al,* The use of solvent relaxation nmr to study colloidal suspensions. *Soft Matter,* 9(30) 7211 (2013)


Silica samples*

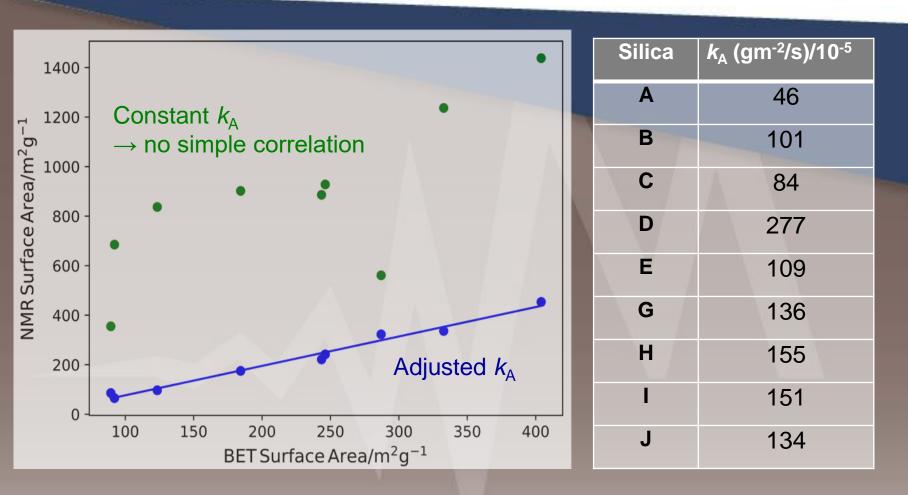
Silica	N ₂ /BET	
	Surface area (m ² g ⁻¹)	
Α	287	
В	246	
С	404	
D	92	
E	89	
G	184	
Н	180	
I	174	
J	136	

* Samples supplied by PQ Silicas, Warrington, UK

Representative SEM

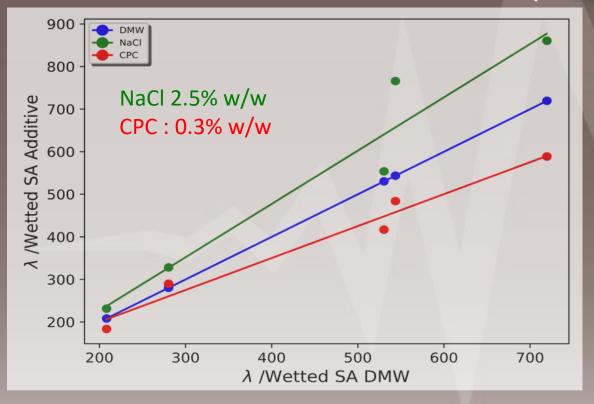
Silica aggregates \rightarrow non-spherical, irregular morphology \rightarrow fused *bodies* 10's of nm in diameter \rightarrow PSD from 100 of nms to 10's of microns *ca* 5 silanol groups/nm² \rightarrow fully hydrated

NMR Surface area



Relaxation rate, R (=1/relaxation time, T) as a function of surface:volume ratio

NMR relaxation measurements characterize the strength of interaction between water (or other liquids or additives) and silica surface functional groups

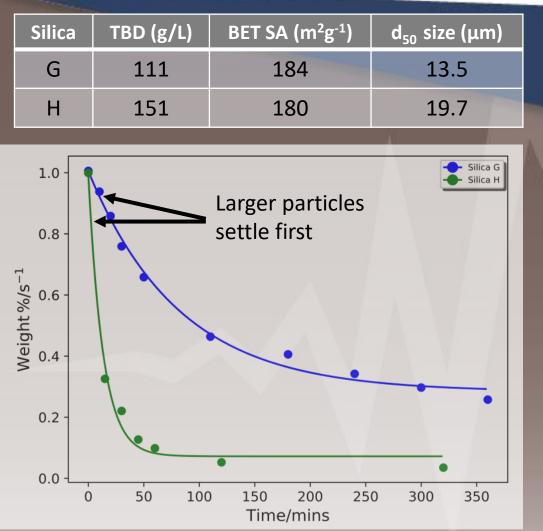

Impact of k_A value on Surface Area Mageleka

Gas adsorption not be able to distinguish between subtle differences in surface chemical/physical structure of silica $\rightarrow N_2$ non-specific; H₂O high degree of specificity

Comparison of Effect of Additives _____Mageleka

Plot R_{sp} vs ϕ (volume fraction of particles) for silica samples A to E Slope, $\lambda = SA k_A/R_b$ λ is dimensionless - independent of BET

Higher λ in DMW \rightarrow larger wetted area available for surface interaction with an additive


Addition of NaCI: Changes most pronounced for those silicas having a *higher* λ in DMW

Addition of CPC: same silicas show the greatest *decrease* in λ

Measurements of λ in DMW

 \rightarrow guide of how those silicas behave in the presence of additives

Silicas have vastly different behavior \rightarrow related to PSD

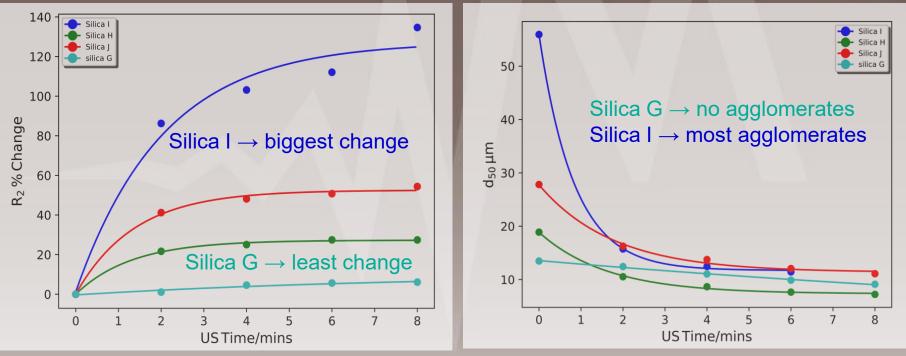
Silica G:

Slower initial rate large fraction of smaller particles still remain in suspension after 200 minutes **Silica H:** Faster initial rate virtually all particles settle

Relaxation data consistent with traditional methods of investigating stability

- \rightarrow tapped bulk density
- \rightarrow particle size by LLS

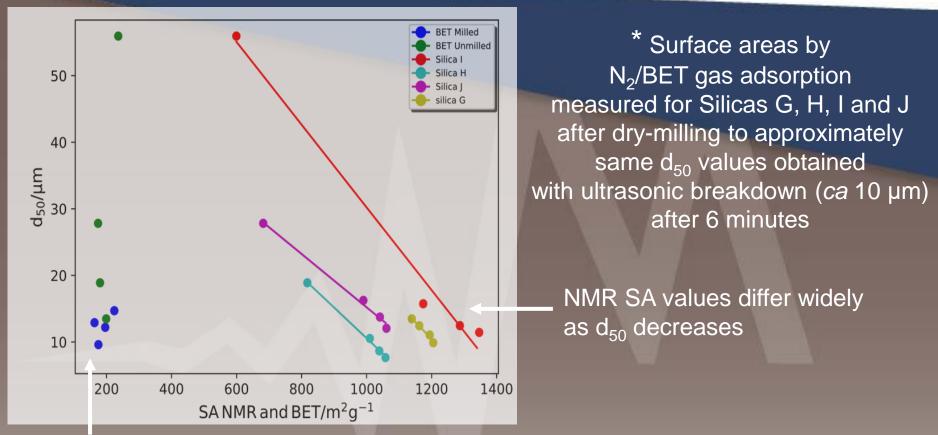
NMR method allows rapid determination of the proportion of fines and sedimentation rate


Effect of Ultrasonic Treatment _____Mageleka

Silicas manufactured under different processing conditions Silica G \rightarrow aggregates; Silicas H, I and J \rightarrow deliberately agglomerated

5%w/w slurries prepared by stirring in DMW

Relaxation rate, R as a function of dispersing time


Change in median size (d₅₀) as a function of dispersing time

NMR data on processing can be obtained directly, in real-time and without dilution

Comparison of Surface area: NMR vs BET* with changing d₅₀

All BET SA values – milled, or unmilled – are invariant as d_{50} decreases

NMR relaxation provides information about structural nature of agglomerated silicas not available by BET analysis

Hydrogel Quality Control

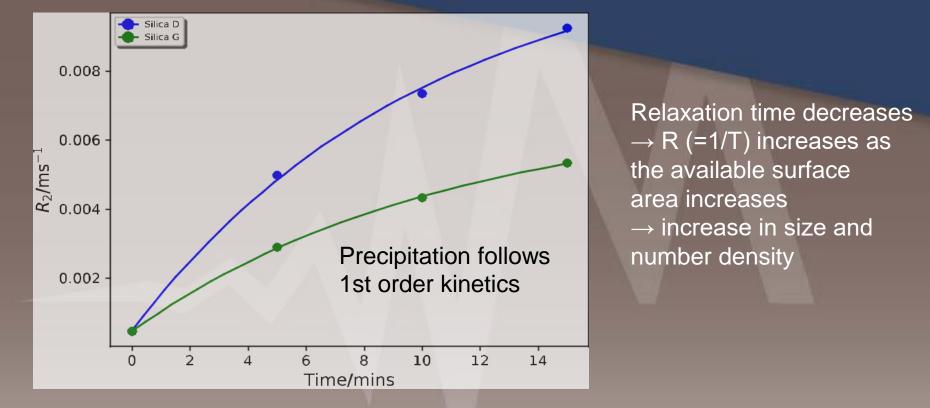
HYDROGELS

 \rightarrow made from sols having a wide range of silica concentrations \rightarrow contain large amounts of water \rightarrow mechanical properties change continuously with time \rightarrow quality control in manufacture is critical

Silica Sample	Water Content (%)	BET Surface Area (m²g⁻¹)	Relaxation Time (ms)
B1	75.45	544	20.4
B2	75.13	554	19.0
B3	73.54	548	15.0
B4	74.12	477	58.0
B5	74.70	450	54.0
B6	73.76	425	76.2
B7	74.01	526	12.7
B 8	74.17	528	15.6

Clear correlation between NMR relaxation time and BET surface area

Silicas that are in-specification all have relaxation time <30ms \rightarrow corresponds to *largest* BET surface areas


Sample preparation of hydrogels for BET analysis complicated and time consuming \rightarrow not ideal for QC

NMR data obtained directly on hydrogels in minutes with no sample preparation \rightarrow ideal for QC

Chemical Reaction Profiling

SILICAS → precipitation from silicate solutions

NMR relaxation useful monitoring precipitation/aggregation processes → measurements made in as little as 3 seconds fast → kinetic processes (coagulation and flocculation) can be monitored Technique is non-destructive → samples can be stored for re-analysis → ideal for very long-term processes (shelf-storage)

Conclusions

Mageleka

INMR relaxation is a useful complimentary techniques to traditional particle characterization techniques

- NMR relaxation measurements can:
 - characterize strength and interaction between water and particle surface functional groups
 - monitor the formation and stability of silica dispersions
 - examine the effects of additives (surfactants, polymers)
 - study dispersion techniques

INMR relaxation measurements not limited to silicas → can be used in aqueous and non-aqueous dispersions → virtually any type of nanoparticle → virtually any type of liquid → minimal sample preparation → rapid measurements


Thank you!

geleka

Worldwide Roger Pettman roger@mageleka.com +1 617 331 1130

Europe

Keith Sanderson keith@mageleka.com +44 (0)1744 325 005 North America Lily Zu lily.zu@mageleka.com +1 631 751 3110

MagnoMeter XRS[™] RelaxoMeter

Next generation low-field NMR spectrometer for suspension and emulsion analysis

- Inexpensive, easy-to-use, benchtop device
- Ideal for remote use and hazardous environments
- Industrial R&D, QC/QA, and process laboratories